Depletion of medullary serotonergic neurons in patients with multiple system atrophy who succumbed to sudden death.
نویسندگان
چکیده
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by prominent autonomic failure with ataxia and/or parkinsonism. The leading cause of death in MSA is sudden death. We have shown that the early development of autonomic failure is an independent risk factor for sudden death. The depletion of sympathetic preganglionic neurons in the spinal intermediolateral cell column (IML) and its afferent medullary catecholaminergic and serotonergic neurons has been proposed to be partly responsible for autonomic failure in MSA. In this study, we investigated whether the depletion of neurons in any of these autonomic neuron groups contributes to sudden death in MSA. Out of 52 autopsy-proven patients with MSA, we selected 12 individuals who had died within 3.5 years after disease onset to define the accurate levels of slices and identify early neuropathological changes of autonomic nuclei in MSA. Four patients succumbed to sudden death and eight patients died through established causes. Serial 10 mum sections were obtained from the 8th segment of the thoracic cord and the rostral medulla oblongata. Sections from the medulla oblongata were immunostained for thyrosine hydroxylase and tryptophan hydroxylase. The total cell number in the five sections was computed for comparison. Compared with the control, the MSA group showed a marked depletion of neurons in the IML (38.0 +/- 7.1 versus 75.2 +/- 7.6 cells, P < 0.001), thyrosine hydroxylase-immunoreactive neurons in the ventrolateral medulla (VLM) (17.4 +/- 5.1 versus 72.8 +/- 13.6 cells, P < 0.01) and tryptophan hydroxylase-immunoreactive neurons in the VLM (15.6 +/- 9.2 versus 60.8 +/- 17.0 cells, P < 0.01), nucleus raphe obscurus (19.3 +/- 4.4 versus 75.3 +/- 8.6 cells, P < 0.001), nucleus raphe pallidus (2.1 +/- 2.7 versus 9.0 +/- 3.4 cells, P < 0.03), and arcuate nucleus (0.4 +/- 0.8 versus 2.3 +/- 1.5 cells, P < 0.05). Moreover, in patients who succumbed to sudden death, when compared with patients who had established causes of death, we found a marked depletion of tryptophan hydroxylase-immunoreactive neurons in the VLM (7.3 +/- 3.5 versus 21.8 +/- 6.5 cells, P < 0.02) and nucleus raphe obscurus (15.0 +/- 2.0 versus 22.5 +/- 2.1 cells, P < 0.01). The results indicate that the spinal IML and medullary catecholaminergic and serotonergic systems are involved even in the early stages of MSA, and the dysfunction of the medullary serotonergic system regulating cardiovascular and respiratory systems could be responsible for sudden death in patients with MSA.
منابع مشابه
Depletion of putative chemosensitive respiratory neurons in the ventral medullary surface in multiple system atrophy.
Multiple system atrophy (MSA) is a disorder that may manifest with reduced respiratory chemosensitivity and central sleep apnoea. Chemosensitive glutamatergic and serotonergic neurons located just beneath the ventral medullary surface, corresponding to the human arcuate nucleus (ArcN), have recently been implicated in control of automatic breathing in response to hypercapnia and hypoxia. We sou...
متن کاملSubtle autonomic and respiratory dysfunction in sudden infant death syndrome associated with serotonergic brainstem abnormalities: a case report.
Sudden infant death syndrome (SIDS) is characterized by a sleep-related death in a seemingly healthy infant. Previously, we reported abnormalities in the serotonergic (5-HT) system of the medulla in SIDS cases in 2 independent datasets, including in the Northern Plains American Indians. The medullary 5-HT system is composed of 5-HT neurons in the raphé, extra-raphé, and arcuate nucleus at the v...
متن کاملInhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets.
Medullary raphé serotonergic neurons are chemosensitive in culture and are situated adjacent to blood vessels in the brain stem. Selective lesioning of serotonergic raphé neurons decreases the ventilatory response to systemic CO2 in awake and sleeping adult rats. Abnormalities in the medullary serotonergic system, including the raphé, have been implicated in the sudden infant death syndrome (48...
متن کاملDecreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome.
The sudden infant death syndrome (SIDS) is postulated to result from a failure of homeostatic responses to life-threatening challenges (e.g. asphyxia, hypercapnia) during sleep. The ventral medulla participates in sleep-related homeostatic responses, including chemoreception, arousal, airway reflex control, thermoregulation, respiratory drive, and blood pressure regulation, in part via serotoni...
متن کاملEffect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat
Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 132 Pt 7 شماره
صفحات -
تاریخ انتشار 2009